
.NET Development and Visual Studio

20483: Programming in C#
$2,995.00

5 Days

Upcoming Dates

Course Description

This 5-day course teaches developers the programming skills that are required for developers to create Windows applications using the

C# language. Students review the basics of C# program structure, language syntax, and implementation details, and then consolidate

their knowledge as they build an application that incorporates several features of the.NET Framework 4.5.

The course introduces many of the techniques and technologies employed by modern desktop and enterprise applications, including:

Building new data types.

Handling events.

Programming the user interface.

Accessing a database.

Using remote data.

Performing operations asynchronously.

Integrating with unmanaged code.

Creating custom attributes.

Encrypting and decrypting data.

At the end of the course, students should have a solid knowledge of C# and how to use it to develop .NET Framework 4.5 applications.

Course Outline

Module 1: Creating a Class Hierarchy by Using Inheritance

This module explains how to use inheritance to create a class hierarchy and extend a .NET Framework class. This module also describes

how to create generic classes and define extension methods.

Lessons

Creating Class Hierarchies

Extending .NET Framework Classes

Creating Generic Types

Lab : Refactoring Common Functionality into the User Class

Creating and Inheriting from the User Base Class

Implementing Password Complexity by Using an Abstract Method

Creating the ClassFullException Class

Interface Technical Training | 602-266-8500 | interfacett.com Page 1

Module 2: Reading and Writing Local Data

This module explains how to read and write data by using file input/output (I/O) and streams, and how to serialize and deserialize data in

different formats.

Lessons

Reading and Writing Files

Serializing and Deserializing Data

Performing I/O Using Streams

Lab: Generating the Grades Report

Serializing the Data for the Grades Report as XML

Previewing the Grades Report

Persisting the Serialized Grades Data to a File

Module 3: Accessing a Database

This module explains how to create and use an entity data model for accessing a database, and how to use LINQ to query and update data.

Lessons

Creating and Using Entity Data Models

Querying Data by Using LINQ

Updating Data by Using LINQ

Lab: Retrieving and Modifying Grade Data

Creating an Entity Model from the The School of Fine Arts Database

Updating Student and Grade Data Using the Entity Framework

Extending the Entity Model to Validate Data

Module 4: Review of C# Syntax

This module reviews the core syntax and features of the C# programming language. It also provides an introduction to the Visual Studio

2012 debugger.

Lessons

Overview of Writing Applications using C#

Datatypes, Operators, and Expressions

C# Programming Language Constructs

Lab: Developing the Class Enrolment Application

Implementing Edit Functionality for the Students List

Implementing Insert Functionality for the Students List

Implementing Delete Functionality for the Students List

Displaying the Student Age

Module 5: Creating Methods, Handling Exceptions, and Monitoring Applications

This module explains how to create and call methods, catch and handle exceptions. This module also describes the monitoring

requirements of large-scale applications.

Lessons

Interface Technical Training | 602-266-8500 | interfacett.com Page 2

Creating and Invoking Methods

Creating Overloaded Methods and Using Optional and Output Parameters

Handling Exceptions

Monitoring Applications

Lab: Extending the Class Enrolment Application Functionality

Refactoring the Enrolment Code

Validating Student Information

Saving Changes to the Class List

Module 6: Developing the Code for a Graphical Application

This module describes how to implement the basic structure and essential elements of a typical desktop application, including using

structures and enumerations, collections, and events.

Lessons

Implementing Structs and Enums

Organizing Data into Collections

Handling Events

Lab: Writing the Code for the Grades Prototype Application

Adding Navigation Logic to the Application

Creating Data Types to Store User and Grade Information

Displaying User and Grade Information

Module 7: Creating Classes and Implementing Type-safe Collections

This module explains how to create classes, define and implement interfaces, and create and use generic collections. This module also

describes the differences between value types and reference types in C#.

Lessons

Creating Classes

Defining and Implementing Interfaces

Implementing Type-safe Collections

Lab: Adding Data Validation and Type-safety to the Grades Application

Implementing the Teacher, Student, and Grade Types as Classes

Adding Data Validation to the Grade Class

Displaying Students in Name Order

Enabling Teachers to Modify Class and Grade Data

Module 8: Accessing Remote Data

This module explains how to use the types in the System.Net namespace, and WCF Data Services, to query and modify remote data.

Lessons

Accessing Data Across the Web

Accessing Data in the Cloud

Lab: Retrieving and Modifying Grade Data in the Cloud

Creating a WCF Data Service for the SchoolGrades Database

Integrating the WCF Data Service into the Application

Retrieving Student Photographs Over the Web

Interface Technical Training | 602-266-8500 | interfacett.com Page 3

Module 9: Designing the User Interface for a Graphical Application

This module explains how to build and style a graphical user interface by using XAML. This module also describes how to display data in a

user interface by using data binding.

Lessons

Using XAML to Design a User Interface

Binding Controls to Data

Styling a User Interface

Lab: Customizing Student Photographs and Styling the Application

Customizing the Appearance of Student Photographs

Styling the Logon View and the StudentPhoto Control

Module 10: Improving Application Performance and Responsiveness

This module explains how to improve the throughput and response time of applications by using tasks and asynchronous operations.

Lessons

Implementing Multitasking by using Tasks and Lambda Expressions

Performing Operations Asynchronously

Synchronizing Concurrent Access to Data

Lab: Improving the Responsiveness and Performance of the Application

Ensuring that the User Interface Remains

Responsive When Retrieving Data for Teachers

Providing Visual Feedback During Long-Running Operations

Module 11: Encrypting and Decrypting Data

This module explains how to encrypt and decrypt data by using symmetric and asymmetric encryption.

Lessons

Implementing Symmetric Encryption

Implementing Asymmetric Encryption

Lab: Encrypting and Decrypting Grades Reports

Encrypting the Grades Report

Decrypting the Grades Report

Module 12: Integrating with Unmanaged Code

This module explains how to integrate unmanaged libraries and dynamic components into a C# application. This module also describes

how to control the lifetime of unmanaged resources.

Lessons

Creating and Using Dynamic Objects

Managing the Lifetime of Objects and Controlling Unmanaged Resources

Lab: Upgrading the Grades Report

Generating the Grades Report by Using Microsoft Office Word

Controlling the Lifetime of Word Objects by Implementing the Dispose Pattern

Module 13: Creating Reusable Types and Assemblies

Interface Technical Training | 602-266-8500 | interfacett.com Page 4

This module explains how to examine the metadata of types by using reflection, create and use custom attributes, generate managed

code at runtime, and manage different versions of assemblies.

Lessons

Examining Object Metadata

Creating and Using Custom Attributes

Generating Managed Code

Versioning, Signing and Deploying Assemblies

Lab: Specifying the Data to Include in the Grades Report

Creating the IncludeInReport Attribute

Generating the Report

Storing the Grades.Utilities Assembly Centrally

Audience

This MOC on-demand course is intended for experienced developers who already have programming experience in C, C++,JavaScript,

Objective-C, Microsoft Visual Basic, or Java and understand the concepts of object-oriented programming.

This course is not designed for students who are new to programming; it is targeted at professional developers with at least one month

of experience programming in an object-oriented environment.

Prerequisites

Developers attending this course should already have gained some limited experience using C# to complete basic programming tasks.

More specifically, students should have hands-on experience using C# that demonstrates their understanding of the following:

How to name, declare, initialize and assign values to variables within an application.

How to use arithmetic operators to perform arithmetic calculations involving one or more variables

How to use relational operators to test the relationship between two variables or expressions

How to use logical operators to combine expressions that contain relational operators.

How to create the code syntax for simple programming statements using C# language keywords and recognize syntax errors using the

Visual StudioIDE.

How to create a simple branching structure using an IF statement.

How to create a simple looping structure using a For statement to iterate through a data array.

How to use the Visual Studio IDE to locate simple logic errors.

How to create a Function that accepts arguments (parameters and returns a value of a specified type.

How to design and build a simple user interface using standard controls from the Visual Studio toolbox.

How to connect to a SQL Server database and the basics of how to retrieve and store data.

How to sort data in a loop.

How to recognize the classes and methods used in a program.

What You Will Learn

After completing this course, students will be able to:

Describe the core syntax and features of C#.

Create and call methods, catch and handle exceptions, and describe the monitoring requirements of large-scale applications.

Implement the basic structure and essential elements of a typical desktop application.

Create classes, define and implement interfaces, and create and use generic collections.

Use inheritance to create a class hierarchy, extend a .NET Framework class, and create generic classes and methods.

Read and write data by using file input/output and streams, and serialize and deserialize data in different formats.

Create and use an entity data model for accessing a database and use LINQ to query and update data.

Use the types in the System.Net namespace and WCF Data Services to access and query remote data.

Interface Technical Training | 602-266-8500 | interfacett.com Page 5

Build a graphical user interface by using XAML.

Improve the throughput and response time of applications by using tasks and asynchronous operations.

Integrate unmanaged libraries and dynamic components into a C# application.

Examine the metadata of types by using reflection, create and use custom attributes, generate code at runtime, and manage assembly

versions.

Encrypt and decrypt data by using symmetric and asymmetric encryption.

Interface Technical Training | 602-266-8500 | interfacett.com Page 6

