home > training > ML100:Understanding Machine Learning in the Enterprise

2 Student Comments

ML100:Understanding Machine Learning in the Enterprise

$595

  • 1 Day
  • Replay™ Class Recordings Included

Interested in scheduling a date for this course?
Request A Date
Register today - no risk!  No cancellation fees.  Full money back guarantee!
x
Course:
  • This field is for validation purposes and should be left unchanged.

Course Description

Machine Learning is being implemented in many ways to solve a variety of different problems.  In this course, we will learn what kind of questions machine learning can solve, the underlying classifications employed in solutions, the information necessary to create a solution, understanding the results, tools used to create machine learning, including low and no code methods in Azure and Power BI.  Attendees will leave the course understanding what machine learning can do, what the development steps are, and how to use tools to generate a solution in your environment.

Outline

Introduction to Machine Learning and Data Science

  • Describing Machine Learning, Data Science and AI
  • The 5 different kinds of problems Machine Learning can solve
  • Technology capabilities vs hype and mirrors
  • Machine Learning classifications

Data Requirements for Machine Learning

  • All about data selection and quality
  • Understanding overfitting
  • Avoiding bias in data selection
  • Transparency solution development

The unagile Machine Learning Solution Process

  • CRISP Method
  • Understanding the data cleansing process
  • Training sets and what they are for
  • How the computer learns a from data
  • Walk through a machine learning solution step-by-step

Interpreting Results

  • Correlation and Causation
  • Different result visualizations and their meaning
  • Understanding Confusion Matrix

Implementation Options

  • Implementation Options
  • Understanding Data drift
  • Ongoing Monitoring of results
  • Planned obsolesce of the solution

Development Tools

  • A review of common languages and libraries for creating machine learning
  • No code option of development
  • Incorporating Cognitive Services
  • Machine Learning insights in Power BI
Student Comments (2)
Comments about the Courseware
"Ginger presented the material professionally and helped me better understand the world of ML and Data Science."
August 31, 2021 | ML100 Student
Comments about enhancing the Courseware
"There is to wide and varied range of things to cover in one day. I would change the course to be a week long and go into more depth and/ add labs"
August 31, 2021 | ML100 Student